
Flutter Engineering

Copyright 2024 Majid Hajian

Sample Digital Version

2

Contents

Contributors and Reviewers 5

Preface 7

Acknowledgment 11

I Foundation of Flutter Engineering 13

1 Flutter Engineering: Core Concepts 15

1.1 Engineering Software with Flutter 15

1.2 Unpacking the Core Principles . 17

1.3 Lifecycle of Flutter Development 29

1.4 Flutter Engineering vs. Programming 31

1.5 Flutter’s Position in Tech Evolution 32

1.6 Conclusion . 33

2 Custom Painters and Shaders 35

2.1 The Art of CustomPainter . 35

2.2 Exploring Shaders . 48

2.3 Using Shaders in Flutter . 52

2.4 Conclusion . 60

Closing Words 63

4 CONTENTS

Contributors and Reviewers

Simon Lightfoot, Mangirdas Kazlauskas, Roman Jaquez, Erick Zanardo, Carlo
Lucera, Marco Napoli, Alessio Salvadorini, Pooja Bhaumik, Dominik Roszkowski,
Oleksandr Leushchenko, Anna Leushchenko, Tomá Soukal, Danielle Cox, Manuela
Sakura Rommel, Verena Zaiser, Cagatay Ulusoy, Mike Rydstrom, Muhammed
Salih Guler and Renan Araujo.

Your commitment to detail has ensured the accuracy and clarity of the content.

Cover Design:

The cover art of this book is an outstanding collaboration between human creativ-
ity and artificial intelligence. It features an engineered butterfly that represents
Flutter Engineering. Thanks to Shirin Sameiee for being a creative artist in bring-
ing this visionary concept to life.

Digital Version:

This book is available in various formats, including PDF, EPUB, and MOBI. Visit
Flutterengineering.io for more information and continuous updates.

6 CONTENTS

Preface

My journey in programming has been diverse, from backend and frontend roles to
full-stack development, software architecture, and developer relationships. Each
step has enriched my insight into exceptional software engineering.

As someone naturally drawn to logic and analysis, I have often considered what
makes a great software engineer and how to plan an app and manage its develop-
ment effectively. “Flutter Engineering” aims to answer these questions and more.
This book lays the foundation for a broader understanding of app development,
offering knowledge, architectural insights, and advanced Flutter-specific content.
This project is your gateway to look at software engineering concepts in Flutter.
It is designed to guide, open doors, and help you explore.

During my year-long effort, I approached Flutter from an engineering perspective
rather than merely a programming skill. As a Flutter engineer, building an app
requires more than just coding skills. The “Flutter Engineering” project (flut-
terengineering.io) and this book were created to share this knowledge. Welcome
to “Flutter Engineering.”

0.0.1 Who is this book for?

This book is intended for readers with a basic understanding of Flutter and some
experience with Dart programming and Flutter. It is unnecessary to be an expert,
but if you have no prior experience with Flutter and want to learn it from scratch,
this book may not suit you, as I have this assumption while explaining concepts.

This book is meant to help beginner and professional Flutter developers level up
their skills in software engineering.

0.0.2 What you will learn

This book covers various software engineering topics in Flutter and is divided into
five parts, each addressing specific areas of interest and expertise.

• Part 1 of this book introduces software engineering concepts specifically rele-
vant to Flutter. It starts by explaining the fundamental principles of Flutter
and how they work and then moves on to demonstrate how these concepts

can be applied within the Flutter framework. This section also covers coding
design patterns that help readers develop a foundational understanding of
the subject matter.

• The second part of this material centers on architecture, beginning with ba-
sic principles and progressing onto different styles and patterns in architec-
tural design. It covers important concepts such as concurrency, parallelism,
dependency injection, and state management. Additionally, this section ex-
plores the architectural factors involved in developing offline apps, guiding
readers on strategic thinking and decision-making in software architecture.

• Part 3 of this book covers the important software development processes
necessary for building a successful app. It covers rules and guidelines, con-
tinuous delivery and integration, testing methodologies, and effective docu-
mentation practices in a comprehensive manner. This section gives readers
the knowledge needed to streamline and efficiently develop apps.

• Part 4 covers important aspects of security and privacy in software devel-
opment, specifically related to Flutter. It discusses the OWASP Top 10
security risks, privacy standards, and accessibility considerations. The sec-
tion emphasizes creating inclusive and secure applications that value user
privacy.

• Part 5 delves into advanced user interface (UI) concepts, including adap-
tive and responsive design strategies. It also explores sophisticated topics
like custom painting, shaders, internationalization, localization, and effec-
tive theming in Flutter. This section enhances the reader’s skills in creating
visually appealing and user-friendly interfaces.

Whether a beginner or an experienced developer, this book can offer you something
to learn. Although the book covers a wide range of topics, discussing each topic
in detail could deserve a dedicated book. It is impossible to cover all the details
and edge cases in one book, but I have done my best to cover the most important
details. I plan to discuss topics I could not detail enough and cover edge cases on
flutterengineering.io1, so subscribe to the newsletter for free access to additional
content.

0.0.3 How to use this book

This book has been designed to allow you to read each chapter independently. You
are free to start from any part of the book. However, reading an entire part from
start to end is always better. Certain fundamental concepts must be understood
before proceeding to subsequent chapters. Therefore, I do not recommend starting
with chapters that follow the previous chapter. Usually, in the introduction of each
chapter, I mention if you should have read another chapter before starting it. Pay
attention to this detail to read and understand the book better.

As you progress through this book, you’ll encounter various conventions to enhance

1http://flutterengineering.io/

8 CONTENTS

http://flutterengineering.io/

your reading and learning experience. Knowing these will help you understand
and navigate the content more effectively.

1. Bold Titles and Keywords: Key concepts, titles, and important key-
words are emphasized in bold font. This highlights essential information
and makes it stand out for easy reference.

2. Italicized Queries and Comments: To differentiate, queries or comments
within the text are presented in italic. This formatting helps distinguish
them from the main content, providing additional insights or raising ques-
tions for contemplation.

3. Inline Code: I have tried to use inline code where it’s possible to highlight the
difference between regular text and a piece of code within the paragraphs.

4. Formatted Code Blocks: The Dart programming language formats the
code examples for clarity. The blocks are structured to reflect the appropri-
ate syntax and style of the language.

5. Pseudo-code Examples: It’s important to note that most code examples
are presented as pseudo-code. When integrated into your projects, they are
simplified and may require additional coding or imports. This approach aims
to focus on the key parts of the code, minimizing distractions and enhancing
understanding. In some instances, critical lines within these code blocks are
further emphasized in bold. Please pay attention to these lines, as they
often represent core ideas.

6. Code Explanations and Comments: You will find step-by-step explana-
tions following many code blocks. These are intended to clarify the code and
guide you through the logic and functionality. While comments are included
within the code blocks to aid comprehension, they are kept brief to avoid
overloading the code with annotations.

7. Access to Complete Code Examples: To view the full working exam-
ples, please visit the accompanying website at flutterengineering.io2. There,
you find where to access and clone the book’s example repository, which
contains the complete and functional code samples referenced in the book.

By familiarizing yourself with these conventions, you can navigate the book more
efficiently and better understand the material. Enjoy your journey into Flutter
engineering!

0.0.4 Found a bug?

Every chapter of this book has gone through a complete review process. At
least two people have read each chapter, and an editor has also reviewed them.
Before publication, the book’s examples were tested, and multiple feedbacks were
addressed to ensure their accuracy.

2http://flutterengineering.io/

CONTENTS 9

http://flutterengineering.io/

However, despite all these efforts, some errors may still exist. You may encounter
some grammar or spelling mistakes (which I hope you don’t), or you may notice
technical errors such as code errors or wrong explanations. If you disagree with
any part of the book and have a valid reason, please don’t hesitate to contact me.
Your feedback and review are valuable to me, and I will consider and revise the
book to ensure that the next person who reads it experiences different issues.

I appreciate your help in this process.

0.0.5 Contact me

If you would like to contact me, which I highly encourage, especially for sending
me feedback and reviews of my book, you can do so in a few different ways.
You can subscribe to my website newsletter or email me directly at majid@
flutterengineering.io3. Alternatively, you can connect with me directly on so-
cial media. I am active on LinkedIn (linkedin.com/in/mhadaily) and Twitter
(x.com/mhadaily). You can also find me on YouTube (youtube.com/mhadaily)
and GitHub (github.com/mhadaily).

3mailto:majid@flutterengineering.io

10 CONTENTS

mailto:majid@flutterengineering.io

Acknowledgment

I extend my heartfelt gratitude to everyone who has supported and contributed
to the creation of this book. First and foremost, I would like to thank my family
for their tireless support and patience throughout this journey. Their support and
faith in my dreams have been the foundation of my drive.

Thanks to the Flutter Team for doing such amazing work, particularly to Craig
Labenz, Leigha Reid, Eric Windmill, Kevin Moore, Kate Lovett, and John Ryan
and many more engineers in Flutter team, whose content inspired me.

I also acknowledge the contribution of the technical reviewers, whose keen eyes
and expert knowledge have greatly enhanced the quality of this book. Thank
you Simon Lightfoot, Anna Leushchenko, Oleksandr Leushchenko, Mangirdas
Kazlauskas, Roman Jaquez, Erick Zanardo, Carlo Lucera, Marco Napoli, Alessio
Salvadorini, Pooja Bhaumik, Dominik Roszkowski, Tomá Soukal, Danielle Cox,
Manuela Sakura Rommel, Verena Zaiser, Cagatay Ulusoy, Mike Rydstrom,
Muhammed Salih Guler and Renan Araujo. Your commitment to detail has
ensured the accuracy and clarity of the content.

I am grateful to my friends Taha Tesser, Argel Bejarano, Nilay Coskun, Elliot
Hesp, Mike Diarmid, Andrea Bizzotto, Jaime Blasco, Bettina Carrizo, Tomas
Piaggio, Enzo Conty, Gonçalo Palma, Chris Swan, Esra Kadah, Randal Schwartz,
Frank van Puffelen, Mark O’Sullivan, Anthony Prakash, Lukas Klingsbo, Leo
Farias, Abhishek Doshi, Sasha Denisov, Pascal Welsch, Swav Kulinski, Pawan
Kumar, Scott Stoll, Remi Rousselet, Filip Hráek, Felix Angelov, Ahmed Alabd
and many more which if I want to name I have to write a book only for that; your
passion and dedication to the field have inspired me constantly.

I want to express my gratitude to Codemagic and Martin Jeret for being the
pioneers in supporting this book. I am also grateful to Invertase, especially El-
liot Hesp and Mike Diarmid, for their support in various aspects and to Sergiy
Yakymchuk from Talsec, who has been an amazing supporter. Thank you all very
much.

Lastly, I am thankful to the readers and the Flutter community. Your willingness
to learn and grow continually drives me to share my knowledge and experience.
This book is for you, and I hope it serves as a useful guide in your Flutter devel-
opment journey.

12 CONTENTS

Part I

Foundation of Flutter
Engineering

CHAPTER 1

Flutter Engineering: Core
Concepts

Reviewers: Anna Leushchenko, Oleksandr Leushchenko

Welcome to the exciting world of Flutter engineering! This chapter explores the
fundamental principles and concepts that form the basis of successful software de-
velopment using Flutter. Through this exploration, you will gain valuable insights
into the unique perspectives and approaches that distinguish Flutter engineering
from conventional programming, equipping you with the knowledge and under-
standing to craft impactful and enduring applications.

1.1 Engineering Software with Flutter

Throughout my career in software engineering, embracing Flutter has marked a
significant evolution in my approach to technology. More than just acquiring
a new skill, it has involved adopting a comprehensive strategy that spans the
entire software development lifecycle, from design and development to testing and
maintenance.

My diverse background in various technologies has helped me gain a better per-
spective on Flutter, which I see as both a technical tool and a way to promote
innovation and creativity in software development. Flutter Engineering takes a
holistic approach that carefully balances user experience, efficient time manage-
ment, scalability considerations, and the trade-offs required to create impactful
software.

Flutter’s multi-platform architecture enables developers to concentrate on creating
an exceptional user experience instead of getting into the nitty-gritty of platform-
specific details. Unlike native development, which focuses on adhering to plat-
form guidelines, Flutter prioritizes branding and user experience. This approach
encourages developers to prioritize universal usability over platform constraints,
leading to a more user-centric mindset.

Figure 1.1: Flutter Engineering Pillars

User experience (UX) in Flutter engineering is a critical lens through which
every project must be analyzed. I constantly ask myself, “What user will think
of this feature? Does it enhance or complicate their experience?” For example,
when creating a Flutter-based educational app, answering these questions helps
make the design intuitive and engaging for learners; balancing aesthetics with
functionality results in a delightful experience. The challenge is to align this
user-centric focus with the technical capabilities of Flutter, ensuring the app is as
pleasant to interact with as it is functional.

Time is a vital resource in software development. It is a finite constraint that
needs to be managed efficiently to meet project deadlines and deliver value to
stakeholders. Time management in software development goes beyond simply
hitting milestones. Time is a multifaceted and dynamic element in the realm
of Flutter development. It prompts me to frequently ask, “What is the expected
lifespan of my Flutter code? How long this app is going to stay? Year or decade?
What is our deadline to deliver?” These questions go beyond meeting project
deadlines and delve into future-proofing the application.

For example, when I work on a Flutter-based smart home app, I focus not only
on its immediate launch but also on its adaptability to future IoT trends and
technological evolutions. This approach ensures the app remains relevant and
functional over time, adapting to user behavior and technology changes. It also
reminds me to incorporate the mechanism to upgrade Flutter and other third-
party dependencies.

The concept of scale in Flutter engineering is complex and thought-provoking.
When embarking on a new project, I often consider, “How many people are in-
volved, and what roles do they play in the development and maintenance of the
project? How many end-users will use this application later?” These questions

16 Flutter Engineering: Core Concepts

become particularly relevant in larger-scale projects like a comprehensive logistics
application developed with Flutter. Here, the challenge lies in managing a robust
codebase and orchestrating a team with diverse expertise, ensuring cohesive and
efficient development across different platforms and devices.

Trade-offs in Flutter engineering involve making strategic decisions that balance
various aspects of the project. For instance, I often face decisions like, “Should
I implement an advanced, resource-intensive feature that could enhance the user
experience but also affect the app’s performance on some devices?” One example
is choosing between high-resolution graphics and smooth performance in a gaming
app. Another is deciding between implementing an advanced animation that en-
hances the user experience and maintaining a lean, fast-loading application, which
exemplifies the kind of strategic decision-making that defines Flutter engineering.
These decisions are not merely technical but also align with the broader objectives
of the project and the expectations of its users.

In my experience, engineering software with Flutter is a detailed process of crafting
adaptable, scalable solutions that resonate with end-users. It involves a blend
of technical skills, strategic planning, and creative problem-solving, all directed
toward building functional but also engaging and sustainable applications in the
dynamic world of digital technology.

1.2 Unpacking the Core Principles

To fully grasp these concepts, let’s explore Flutter app development through the
lens of core software engineering principles.

1.2.1 Development Paradigms

In software development, diverse ideologies and methodologies guide the construc-
tion of systems. These guiding principles, or development paradigms, offer distinct
lenses through which developers approach and shape software.

Different programming languages are often associated with specific paradigms, and
the language choice can influence how developers think about and solve problems.
Some languages, like Dart, support multiple paradigms.

Across the history of computing, several well-known paradigms have emerged, each
leaving a significant imprint on the field. These include Procedural Programming,
Object-Oriented Programming (OOP), Functional Programming, Agile Develop-
ment, Event-Driven programming, Imperative and Declarative programming, etc.

These paradigms, however, seldom exist in isolation. Flutter embraces a multi-
paradigm programming environment, utilizing various programming techniques
where their strengths are most beneficial. Let’s explore some of the key threads
in this multifaceted approach:

Flutter Engineering: Core Concepts 17

Figure 1.2: Development Paradigms and Concepts

1.2.2 Constraint and Composition Programming

The heart of Flutter’s design lies in its use of composition. This approach in-
volves building complex widgets by combining simpler ones. An example is the
TextButton widget, a composition of other widgets like Material, InkWell1, and
Padding2.

Imagine your app as a giant Lego masterpiece. Each widget, a small, specialized
piece (text, buttons, images), snaps together, building complex screens. This
method of aggressive composition results in a highly customizable and flexible UI.
You will learn more about this in chapter 2.

In Flutter, the layout system employs a form of constraint programming to set
the geometry of UI elements. Constraints regarding size, such as minimum and
maximum width and height, are passed from parent widgets to their children. The
child widgets then adjust their sizes to meet these constraints, allowing Flutter to
efficiently lay out the entire UI, often in a single pass. This approach ensures a
responsive and consistent layout across different devices.

1.2.3 Imperative and Declarative Programming

In Flutter, imperative programming is applied in scenarios requiring direct, step-
by-step operations control. Mobile app business logic frequently involves sequences

1https://api.flutter.dev/flutter/material/InkWell-class.html
2https://api.flutter.dev/flutter/widgets/Padding-class.html

18 Flutter Engineering: Core Concepts

https://api.flutter.dev/flutter/material/InkWell-class.html
https://api.flutter.dev/flutter/widgets/Padding-class.html

Figure 1.3: Constraints go down. Sizes go up. Parent sets position.

of steps, conditions, and loops. Imperative programming allows developers to
express these sequences naturally, making writing and maintaining the logic easier.

Here is a simple example of an imperative-style function with conditional state-
ments:

bool isPositive(int x) {
if (x > 0) {

print('x is positive');
return true;

}
print('x is negative or zero');
return false;

}

Another common example of imperative programming in Flutter can be seen in
unit tests:

testWidgets('CustomButton displays a label', (WidgetTester tester) async {
// Describe the situation under test
await tester.pumpWidget(MaterialApp(home: CustomButton(label: 'Test')));

// List the invariants the test must match
expect(find.text('Test'), findsOneWidget);

// Advance the clock or insert events if necessary
await tester.tap(find.byType(CustomButton));
await tester.pump();

});

Flutter Engineering: Core Concepts 19

Declarative programming is a key aspect of Flutter’s framework, prominently
seen in how widgets are constructed. In Flutter, the UI is typically defined using
Dart’s declarative syntax, where the build methods of widgets consist of single
expressions with nested constructors.

Consider the ListView widget:

ListView(
children: [

ListTile(title: Text('Item 1')),
ListTile(title: Text('Item 2')),
// Additional list items

],
)

In this example, ListView and its children are defined concisely and expressively.

This approach allows developers to describe what the UI should look like rather
than how to construct it step by step, as in imperative programming. The declar-
ative style in Flutter simplifies the process of building complex UIs and enhances
the readability and maintainability of the code. Additionally, this method can
be seamlessly combined with imperative programming for scenarios where a pure
declarative approach might be limited, offering the flexibility to build more dy-
namic and interactive UIs.

Looking at this code, you may see the application with an AppBar and a centered
text. It does not contain the logic that specifies how the UI will be constructed,
but just the declaration of what the user will see:

class MyApp extends StatelessWidget {
@override
Widget build(BuildContext context) {

return MaterialApp(
home: Scaffold(

appBar: AppBar(
title: Text('Declarative Programming in Flutter'),

),
body: Center(

child: Text('Hello, Flutter!'),
),

),
);

}
}

1.2.4 Functional and Object-Oriented Programming

One of the core concepts of functional programming is called “pure function.”
Given the same input, it’s a function that will always produce the same output

20 Flutter Engineering: Core Concepts

and has no observable side effects. The result of a pure function depends only on
its input parameters, and it does not modify any external state, which significantly
simplifies maintenance and opens doors for many optimizations.

Flutter also embraces functional programming, particularly in StatelessWidgets3

that resemble pure functions. For instance, the Icon4 widget can be viewed as a
function mapping its parameters to visual output.

Flutter’s emphasis on immutable data structures. The entire Widget5 class hierar-
chy and supporting classes like Rect6 and TextStyle7 embrace this immutability,
keeping your UI stable and reliable.

Dart’s Iterable8 API is another example of its functional programming charac-
teristics. Remember those handy functions like map, where, and reduce your use
in Dart? These are examples of the functional style frequently used to process
lists of values in the framework.

Flutter’s framework dances with both class inheritance and dynamic prototypes.
Core APIs are built with class hierarchies, where base classes like RenderObject9

define high-level functionalities that subclasses like RenderBox10 specialize, adopt-
ing the Cartesian coordinate system for geometry. But it’s not just static inher-
itance – the ScrollPhysics11 class lets you chain instances dynamically at run-
time, composing, for example, paging physics with platform-specific quirks, all
without needing a pre-chosen platform. This blend of inheritance and dynamic
flexibility gives Flutter apps the power to adapt and evolve like never before!

You will learn more about OOP in Dart in Chapter 3.

1.2.5 Abstraction and Encapsulation

Abstraction and encapsulation are fundamental principles in software engineering
that Flutter effectively utilizes in its widget-centric architecture.

Abstraction is about simplifying complex systems into more manageable models,
and Encapsulation involves grouping data and its associated operations within
classes, protecting data integrity, and preventing improper access.

Abstraction simplifies complex UI elements into manageable widgets, focusing
on essential attributes and functionalities. For example, a ListView widget in
Flutter abstracts the complex functionalities of a scrollable list into an easy-to-
use component.

3https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
4https://api.flutter.dev/flutter/widgets/Icon-class.html
5https://api.flutter.dev/flutter/widgets/Widget-class.html
6https://api.flutter.dev/flutter/dart-ui/Rect-class.html
7https://api.flutter.dev/flutter/painting/TextStyle-class.html
8https://api.flutter.dev/flutter/dart-core/Iterable-class.html
9https://api.flutter.dev/flutter/rendering/RenderObject-class.html

10https://api.flutter.dev/flutter/rendering/RenderBox-class.html
11https://api.flutter.dev/flutter/widgets/ScrollPhysics-class.html

Flutter Engineering: Core Concepts 21

https://api.flutter.dev/flutter/widgets/StatelessWidget-class.html
https://api.flutter.dev/flutter/widgets/Icon-class.html
https://api.flutter.dev/flutter/widgets/Widget-class.html
https://api.flutter.dev/flutter/dart-ui/Rect-class.html
https://api.flutter.dev/flutter/painting/TextStyle-class.html
https://api.flutter.dev/flutter/dart-core/Iterable-class.html
https://api.flutter.dev/flutter/rendering/RenderObject-class.html
https://api.flutter.dev/flutter/rendering/RenderBox-class.html
https://api.flutter.dev/flutter/widgets/ScrollPhysics-class.html

In the context of Flutter, encapsulation is applied to widget development, and
the concept is evident in implementing the Container widget. The Container
widget encapsulates various attributes or properties that define its appearance
and behavior. These attributes include width, height, color, padding, margin,
and more. Developers interact with the Container using a well-defined set of
properties and methods. The encapsulation ensures that the internal details of
how the Container manages these attributes are hidden from the outside world.

Together, abstraction and encapsulation in Flutter contribute to a framework
where complex UI designs are simplified into manageable components, and internal
widget states are well-guarded, enhancing usability and maintainability. You’ll
learn more about these topics in Chapter 3.

1.2.6 Event-Driven Programming

User interactions in Flutter are handled through an event-driven approach.

A prime example of this in Flutter is the use of the Listenable12 class. This class
serves as the foundation for the animation system in Flutter, where changes in the
animation state are treated as events. Listenable provides a subscription model,
enabling multiple listeners to register callbacks triggered in response to specific
events. This mechanism ensures that various parts of the UI stay updated and in
sync with the underlying data or state changes, reflecting the reactive nature of
the framework.

In addition, widgets like GestureDetector13 and state management tools utilize
events to respond to user inputs, exemplifying event-driven programming in the
framework. You will learn more about this in part 2 of this book.

1.2.7 Reactive Programming

In Flutter, reactive programming is a key concept that drives the dynamic nature
of UI development. This paradigm is apparent in how widgets react to changes,
updating their state and appearance in response to user interactions or internal
data changes.

In Flutter’s reactive system, any new input provided in a widget’s constructor im-
mediately triggers a rebuild of that widget, propagating changes down the widget
tree. Conversely, changes in lower-level widgets can propagate up the tree through
event handlers and state updates.

Flutter leverages Dart’s support for streams to provide a reactive programming
model, and StreamBuilder is a widget that plays a key role in this paradigm:

12https://api.flutter.dev/flutter/foundation/Listenable-class.html
13https://api.flutter.dev/flutter/widgets/GestureDetector-class.html

22 Flutter Engineering: Core Concepts

https://api.flutter.dev/flutter/foundation/Listenable-class.html
https://api.flutter.dev/flutter/widgets/GestureDetector-class.html

final StreamController<int> _controller = StreamController<int>();
//
StreamBuilder<int>(

stream: _controller.stream,
builder: (context, snapshot) {

if (snapshot.hasData) {
return Center(

child: Text('Data from stream: ${snapshot.data}'),
);

} else {
return Center(

child: Text('Waiting for data...'),
);

}
},

)

Reactive programming is a programming paradigm that revolves around the prop-
agation of changes and handling asynchronous data streams.

1.2.8 Generic Programming

Flutter uses generics to improve type safety and reduce errors. This is visible
in widgets like DropdownButton<T> where T represents the type of data source,
or classes like State14<T> and GlobalKey15<T>, where T represents the type of
widget or state they are associated with.

1.2.9 Concurrent Programming

Concurrency in Flutter is handled through Dart’s async features like Future16s17

and Stream18s19. This is crucial in scenarios like fetching data from a network or
working with long-running tasks.

You will learn more about Concurrency and Parallelism in chapter 8.

1.2.10 Cohesion and Coupling

In software engineering, cohesion and coupling are fundamental principles that
can make or break a system’s maintainability and efficiency.

14https://api.flutter.dev/flutter/widgets/State-class.html
15https://api.flutter.dev/flutter/widgets/GlobalKey-class.html
16https://api.flutter.dev/flutter/dart-async/Future-class.html
17https://api.flutter.dev/flutter/dart-async/Future-class.html
18https://api.flutter.dev/flutter/dart-async/Stream-class.html
19https://api.flutter.dev/flutter/dart-async/Stream-class.html

Flutter Engineering: Core Concepts 23

https://api.flutter.dev/flutter/widgets/State-class.html
https://api.flutter.dev/flutter/widgets/GlobalKey-class.html
https://api.flutter.dev/flutter/dart-async/Future-class.html
https://api.flutter.dev/flutter/dart-async/Future-class.html
https://api.flutter.dev/flutter/dart-async/Stream-class.html
https://api.flutter.dev/flutter/dart-async/Stream-class.html

Cohesion describes the internal strength of a module and how tightly related its
elements are to its core purpose. Ideally, modules exhibit high cohesion, with
components that work together towards a single goal. Coupling, however, deals
with the degree of interdependence between modules. Striving for low coupling
ensures modules interact minimally, minimizing ripple effects when changes are
made.

In Flutter’s world, two fundamental principles define a maintainable masterpiece:
low coupling and high cohesion. Let’s break down their steps on the Flutter
stage:

High Cohesion

Flutter achieves high cohesion by designing widgets that are focused on specific
functionalities. For instance, the Text widget is solely responsible for displaying a
text string with basic styling. Its responsibilities are clear and well-defined, making
it highly cohesive. Another example is the Image widget, which is dedicated to
displaying images and does not intertwine with non-image functionalities.

Low Coupling

Flutter maintains low coupling by allowing widgets to function independently
with minimal reliance on each other. For example, the Scaffold widget, which
provides the basic material design visual layout structure, operates independently
of the FloatingActionButton widget used for action buttons. Modifications to
a FloatingActionButton, such as changing its icon or color, do not affect the
layout or functioning of the Scaffold, demonstrating low coupling between these
components.

You may ask about the Theme now. Themes primarily affect visual styling, keep-
ing functionality separate. Customizable themes at different levels reinforce low
coupling, ensuring that changes don’t tightly bind widgets.

Generally, widgets should rely on established communication channels like call-
backs and events, minimizing cascading effects when one changes tune.

Figure 1.4: Coupling and Cohesion

24 Flutter Engineering: Core Concepts

When developing with Flutter, it’s crucial to integrate the principles of “low cou-
pling, high cohesion” for a robust app architecture. Create widgets that operate
independently; for instance, a PaymentProcessing widget should not be intri-
cately linked to a UserDashboard widget, demonstrating low coupling. Also,
design each widget with a focused role, like a ChatScreen widget exclusively han-
dling messaging features, ensuring high cohesion.

As you build, regularly ask yourself: “Does changing one widget unnecessarily
impact others?” and “Is each widget’s purpose and function well-defined and
self-contained?” Reflecting on these questions will guide you in creating a more
efficient, well-structured Flutter application.

1.2.11 Separation of Concerns and Modularity

Separation of Concerns (SoC) and Modularity are foundational concepts in soft-
ware engineering that significantly improve code organization, maintainability,
and scalability.

Separation of Concerns is a design principle that involves breaking down a
software application into distinct sections, each addressing a specific aspect or
concern. This approach helps simplify a program’s complexity by allowing devel-
opers to focus on one area at a time without being overwhelmed by others. It aids
in reducing interdependencies, which in turn makes the application more flexible
and easier to maintain. Modularity, however, refers to dividing a software sys-
tem into separate, interchangeable modules, where each module encapsulates a
specific functionality. This design approach facilitates easier testing, debugging,
and updating of individual components, leading to a more robust and adaptable
system.

Flutter’s widget-based architecture is inherently modular, each widget encapsu-
lating a specific UI or functional aspect. This aligns with the SoC principle, where
concerns like user interface, business logic, and data management are kept distinct.

As a Flutter developer, you can leverage these principles to create robust and
efficient applications. For instance, in a Flutter-based to-do application, you can
implement SoC by having a separate UI layer with widgets like TaskListWidget
for displaying tasks. The business logic can be encapsulated in a TaskManager
class that handles task-related operations. At the same time, data handling can be
managed by a DatabaseService responsible for storing and retrieving task data.
Modularity can be achieved by creating reusable components like a LoginService
for user authentication. These can be used across different parts of your app or
even in other projects, often residing within the lib folder or can be extracted
and created as individual pub packages.

It’s also good to know that in Flutter, the concept of Modularity often intersects
with “package by feature” architecture, with a unique aspect being that modules
can often take the form of widgets. This approach organizes the application into
modules based on specific features, where each module, or in many cases, each
widget, represents a distinct functionality of the app.

Flutter Engineering: Core Concepts 25

You will learn more about this in Part 2 of this book, where I delve into Archi-
tecture.

1.2.12 Design Patterns and Strategies

Design patterns in software engineering are established solutions to common design
problems. They act as templates that can be applied to recurring problems in
software design, such as managing object creation, facilitating communication
between objects, and organizing complex interactions, allowing you to write code
that is:

• Reusable: The patterns are reusable, saving time and effort while promot-
ing consistency across your app.

• Maintainable: Code structured with patterns is easier to understand, mod-
ify, and extend in the future.

• Flexible: Patterns adapt to different contexts and requirements, making
your code more versatile.

Flutter doesn’t dictate specific patterns; its core features and architecture natu-
rally lend themselves to various patterns. An excellent example of a design pattern
used within the Flutter framework is the Builder Pattern. One everyday use
of the Builder pattern in Flutter is the ListView.builder widget. This pattern
is frequently employed in Flutter’s widget creation process. The Builder pattern
separates the construction of a complex object from its representation, allowing
the same construction process to create different representations.

You will learn more about design patterns in Chapter 5.

1.2.13 Efficiency, Scalability, and Trade-offs

In software engineering, particularly in Flutter development, understanding and
navigating the complexities of efficiency, scalability, and trade-offs is essential.
These concepts focus on how applications utilize resources (efficiency), adapt to
growth (scalability), and manage the delicate balance between competing needs
(trade-offs). These choices aren’t just about financial aspects but encompass var-
ious factors like resource allocation, personnel effort, etc.

Moving beyond the mindset of “because everyone else is doing it” and towards
a consensus-driven approach that prioritizes well-reasoned, context-specific deci-
sions is essential. This mindset is particularly relevant in Flutter when weighing
options like state management techniques or integrating external packages.

For instance, choosing setState for its simplicity might lead to scalability
challenges, whereas advanced methods like BLoC, though initially more complex,
offer long-term benefits in scalability and maintainability. Similarly, using
cached_network_image brings efficiency and enhanced user experience but
introduces complexities such as added dependencies, which may affect long-term
maintenance and compatibility with Flutter updates.

26 Flutter Engineering: Core Concepts

In my experience, “It depends” is particularly significant in software engineer-
ing, especially when working with Flutter. This highlights the importance of
understanding the specific context of each technology choice. As a developer, I
constantly balance factors like ease of use, scalability, and future maintainabil-
ity. These decisions are more than just about immediate results; they shape the
project’s long-term health. This requires a deep level of critical analysis and fore-
sight, stressing the need for well-informed and sustainable decisions in the rapidly
evolving field of software development.

1.2.14 Verification, Validation, and “Shifting Left”

The Verification and Validation model in software engineering is a process used to
ensure that a system meets all its specifications and fulfills its intended purpose.
“Verification” involves checking whether the system is built correctly and meets
the specified requirements. This is often referred to as “Static Testing.” On the
other hand, “Validation” checks whether the right system is built and meets the
users’ needs, known as “Dynamic Testing.” This model is crucial for ensuring the
quality and reliability of software systems.

In the Flutter context, the Verification and Validation (V&V) model could be
tailored to its ecosystem as follows:

1. Requirement Analysis: Understanding what the app aims to achieve and
the problem it solves for users.

2. App Architecture: Defining the overall structure of the app, including
state management and navigation strategies.

3. Feature Design: Detailing each app feature’s implementation plan, en-
compassing business logic and frontend interface.

4. Unit Design: Breaking down features into smaller, testable units, typically
individual functions or widgets.

The corresponding testing phases are:

1. Unit Testing: Verifying the functionality of individual units or compo-
nents, especially business logic.

2. Widget Testing: Ensuring that Flutter widgets render correctly and in-
teract as expected so the overall widget composition as a feature works.

3. Integration Testing: Assessing the interaction between combined units or
widgets within the app so the overall architecture works.

4. User Acceptance Testing: Validating the app against user requirements,
often through manual testing, to ensure it meets their expectations.

The V&V model ensures that the Flutter app is developed correctly and meets
its designed needs at each stage, from requirements to acceptance testing.

The “Shifting Left” concept in software development, particularly within Flutter,
suggests that investing time in earlier stages of the development lifecycle—such
as design, development, and initial testing—is more cost-effective than addressing

Flutter Engineering: Core Concepts 27

Figure 1.5: Flutter Verification and Validation Model

issues later in the pipeline. The closer an issue is discovered to its introduction
(typically on the left side of the development timeline), the less costly it is to fix.
This is because issues found during stages like staging or production (on the right
side) can be significantly more expensive and time-consuming to resolve due to
the complexity of debugging and the potential impact on the user experience.

“Shifting Left” in Flutter effectively means incorporating practices like static code
analysis to catch syntactical errors and potential bugs early. Code reviews are
essential to ensure quality and catch issues that automated tools might miss. In-
tegrating automation within CI pipelines allows for consistently executing unit,
widget, and integration tests, ensuring that new code additions meet quality stan-
dards before merging. Additionally, employing feature flags and A/B testing
enables developers to test new features selectively in production environments,
reducing the risk of widespread issues.

Figure 1.6: Shifting Left Concept in Flutter Development

28 Flutter Engineering: Core Concepts

By embedding these practices early and throughout the Flutter development pro-
cess, teams can mitigate risks, reduce the cost of late-stage defect remediation,
and deliver high-quality, robust applications efficiently.

The “Shifting Left” concept emphasizes integrating these processes early in the
development cycle. For Flutter developers, it means conducting tests and quality
checks right from the initial stages. This early intervention helps detect and fix
issues promptly, reducing the cost and time typically associated with later-stage
debugging. Implementing these practices in Flutter improves code quality and
enhances the application’s reliability and user experience.

1.2.15 Informed Decision-Making in Development

In Flutter and software development, informed decision-making often involves
weighing quantifiable factors against more nuanced, non-quantifiable aspects. For
example, a developer may need to choose between using state management solu-
tions like BLoC, which offers scalability but with added complexity, versus more
straightforward options like setState, which are easier to implement but may
need to scale better for larger apps.

Additionally, decisions in Flutter are sometimes about something other than mea-
surable elements. Consider implementing a custom widget versus using an existing
third-party widget. The decision encompasses not just immediate functionality
but also factors like long-term maintenance, the reliability of the third-party pack-
age, and its alignment with the app’s evolving needs.

Balancing these aspects requires careful consideration of both the quantifiable
impacts and the less tangible, yet equally important, long-term implications of
development choices in Flutter.

1.3 Lifecycle of Flutter Development

Before adapting it for Flutter development, let’s understand the Software Devel-
opment Lifecycle (SDLC). SDLC is a structured framework that defines a series
of stages for building and delivering software applications. It provides a roadmap
for developers and stakeholders, ensuring quality, efficiency, and predictability
throughout development.

There are various SDLC models, each with its specific stages and emphasis. Some
popular models include:

• Waterfall Model: This linear, sequential model follows a strict stage-gate
approach, where each stage must be completed before moving to the next. It
is efficient for precise requirements and controlled environments.

• Agile Model: This iterative and incremental model emphasizes flexi-
bility and adaptability. It breaks down development into smaller cycles
(sprints), enabling continuous feedback and delivery of working software.

Flutter Engineering: Core Concepts 29

• Spiral Model: This risk-driven model combines Agile’s iterative nature
with Waterfall’s control. It involves risk assessment throughout the develop-
ment cycle, making it suited for high-risk projects.

Figure 1.7: Waterfall vs. Agile vs. Spiral Models

Regardless of the chosen model, the core stages of an SDLC typically include:

1. Analysis: This phase involves understanding the specific needs and objec-
tives of the Flutter app. It includes gathering detailed requirements from
stakeholders and defining the scope of the app.

2. Design: Based on the requirements, the overall system architecture for the
Flutter app is designed. This includes deciding on the app’s navigation flow,
state management approach, and overall UI/UX design.

3. Development: Here, the actual coding of the Flutter app takes place. De-
velopers write Dart code to implement the defined functionalities, adhering
to the design specifications. Developers should write unit and widget tests
as part of their best practice in writing code.

4. Testing: In this critical phase, the Flutter app undergoes various tests
to ensure quality and performance. This includes integration testing and
potentially user acceptance testing to validate all aspects of the app.

5. Deployment: Once testing is complete and the app is bug-free, it is de-
ployed to the appropriate platforms (e.g., Google Play Store, Apple App
Store). This might involve setting up CI/CD pipelines for efficient deploy-
ment processes.

6. Maintenance: Post-deployment, the app enters the maintenance phase,
where it is updated regularly, bugs are fixed, and new features are added
as per user feedback or changing requirements. Monitoring the application
is another part of this phase. Monitoring is related to crash reporting and
bugs, analytics, performance measurement, etc.

In adapting the Software Development Life Cycle (SDLC) for Flutter development,
a few specific considerations come into play to leverage the unique features of the
framework. During the Requirement Analysis phase, a mobile-first approach is
key, but with an eye on potential expansion to web and desktop, thanks to Flutter’s

30 Flutter Engineering: Core Concepts

versatility. Flutter’s hot reload feature facilitates rapid prototyping and iterative
feedback, while performance requirements for animations and responsiveness are
crucial for diverse device compatibility.

As the process moves into System Design, Development, Testing, and Deploy-
ment, selecting appropriate widgets and state management solutions tailored to
the application’s complexity becomes vital. Dart language features, like null safety
and best practices in widget hierarchy and code organization, ensure clarity and
efficiency. Testing, a critical phase, encompasses unit, widget, and integration
testing to ensure stability and user-friendliness, with performance testing to opti-
mize the app across devices. Finally, the deployment phase benefits from Flutter’s
ability to share codebases across platforms facilitated through CI/CD pipelines
for efficient multi-platform releases.

Figure 1.8: Flutter Software Development Life Cycle

Remember, your specific adaptations will depend on the project’s size, complexity,
and requirements. Choose the tools and practices that best suit your development
team and application goals.

1.4 Flutter Engineering vs. Programming

Up to this point, we’ve explored various facets of software engineering, and at this
stage, you should have gained a more comprehensive understanding of this topic.
However, I’d like to elaborate further and share my perspective.

In software development, “Flutter engineering” and “programming” represent dis-
tinct roles and responsibilities within a project. Programming primarily involves
writing code to implement specific functionalities, focusing on code implementa-
tion and problem-solving. Programmers are responsible for translating design and

Flutter Engineering: Core Concepts 31

requirements into executable code. In contrast, Flutter engineering encompasses a
more comprehensive role. Flutter engineers write code, design the system architec-
ture user interface, and make strategic project structure and scalability decisions.
They focus on code quality, project management, and innovation, playing a pivotal
role in the development process. Understanding these differences is essential for
effectively managing a Flutter project and assembling the right team for success.

1.5 Flutter’s Position in Tech Evolution

As we conclude this chapter, I’d like to express my perspective on the position
of Flutter in the ever-evolving landscape of technology. Flutter occupies a truly
unique and exciting position in the tech world.

1.5.1 Multi-platform Approaches

Flutter emerges as a true industry disruptor in an era where multi-platform devel-
opment has gained paramount importance. Its capability to seamlessly empower
developers to craft high-quality, visually captivating applications across diverse
platforms represents a paradigm shift. The framework’s focus on productivity,
creativity, and efficiency has revolutionized our approach to application develop-
ment, democratizing access for developers and businesses of all scales. The notion
that “wherever there’s a pixel, Flutter can be found” has fundamentally altered
our perceptions of building multi-platform software from a single code base.

In this context, Flutter is a technological enabler and a catalyst for developer
growth. It encourages developers to broaden their knowledge and skillsets across
various platforms, each with unique attributes. This approach enhances the qual-
ity of apps, elevating the user experience and fostering the evolution of developers
into seasoned professionals within their field.

1.5.2 Flutter’s Role in Broader Tech Ecosystem

Furthermore, Flutter’s role in the broader tech ecosystem holds significant impor-
tance. It streamlines the complexities of cross-platform development, catalyzing
innovation by promoting the creation of visually appealing, responsive, and consis-
tently exceptional user experiences. As we delve deeper into the world of Flutter
development in the upcoming chapters, it becomes apparent that Flutter is not
merely a tool; it’s a driving force that pushes the boundaries of what is achievable
in software development.

Flutter’s innovative methods for multi-platform development allow developers to
focus on creating user experiences rather than on specific technology or platforms.
Additionally, the vibrant Flutter community plays a pivotal role in shaping the
technology, fostering greater demand and innovation. Flutter is a remarkable role
model to its peers and the broader technology industry as it continues to evolve
and leave a lasting mark on the world of software development.

32 Flutter Engineering: Core Concepts

Flutter is relevant in the present and is set to shape the future.

1.6 Conclusion

This chapter has comprehensively explored the fundamental principles and unique
philosophy that drive high-quality Flutter development. We’ve delved into critical
paradigms, including abstraction, encapsulation, design patterns, and considera-
tions of efficiency and scalability. The concept of “shifting left” through early
verification and validation has been emphasized, setting the stage for informed
decision-making throughout the development lifecycle.

Furthermore, we’ve underlined the distinction between programming and engi-
neering, showcasing how Flutter promotes modularity, separation of concerns,
and thoughtful trade-off analysis. We’ve also situated Flutter within the broader
tech landscape, shedding light on its strengths and potential impact compared to
other multi-platform approaches.

As we wrap up this chapter, we must ask the following question: How can we
harness these foundational insights to create high-performance, maintainable, and
aesthetically pleasing Flutter applications? This question will be our guiding star
as we embark on the exciting journey of applying these principles in practice and
crafting exceptional Flutter experiences in the following chapters.

Flutter Engineering: Core Concepts 33

34 Flutter Engineering: Core Concepts

CHAPTER 2

Custom Painters and Shaders

Reviewer: Renan C. Araújo

The world of custom painting and shaders in Flutter is vast and limitless. It offers
remarkable flexibility that goes beyond conventional frameworks. The purpose of
this chapter is not only to help you become a professional Flutter developer who
can use canvas and shaders to create generative animated art but also to provide a
comprehensive understanding of the engineering aspects of these features. We will
explore when and how you can utilize these powerful tools in Flutter to enhance
your applications while balancing technical ability with creative expression. It
would require a book or more to thoroughly cover these topics, which could be
the focus of my next book. Alternatively, please email me if you know these areas
and would like to collaborate with me on writing about them.

Let’s begin now.

2.1 The Art of CustomPainter

CustomPainter is a canvas for drawing custom designs in a Flutter application.
The CustomPaint widget in Flutter is a gateway to creating visually stunning
and unique user interfaces. At its core, CustomPaint is a widget that provides a
canvas to draw custom graphics. It bridges the high-level world of Flutter widgets
and the low-level operations of drawing and rendering.

But why and when should you use CustomPainter? The key lies in its flexibil-
ity and control. It’s ideal for scenarios where you must create complex, custom
graphics that can’t be achieved with standard widgets. This includes scenarios like
generating dynamic shapes, creating intricate animations, or implementing cus-
tom UI elements that must be visually distinct and interactive. CustomPainter
shines in applications that require a high degree of customization in the UI, such
as games, data visualization tools, or any app that wants to stand out with a
unique visual identity.

Sometimes, you may need to use CustomPainter to optimize your application’s
UI. For instance, if you have a complex UI that can be created using standard

widgets, it might cause lags or consume a lot of energy and CPU. Using lower-
level APIs in CustomPainter can help you optimize your app even more, though
this may come at the cost of higher complexity in understanding and writing code.
So, if you need to improve your app’s performance, CustomPainter is an excellent
option.

In short, CustomPainter is about painting points on the screen as desired. Cus-
tomPainter performs better than other widgets in Flutter because it bypasses
the complex widget layout mechanism that Flutter usually uses. This allows the
author to control what the canvas will do. A similar concept can be found in frag-
ment shaders, where the author bypasses the Flutter framework and engine. But
remember, as Winston Churchill once said: “Where there is great power, there is
a great responsibility.”

2.1.1 CustomPaint widget

To better understand CustomPaint in Flutter, let’s review its fundamental
structure and usage. The foundation is built upon a custom class that extends
CustomPainter, as shown in the snippet:

class AwesomePainter extends CustomPainter {
const AwesomePainter();

@override
void paint(Canvas canvas, Size size) {}

@override
bool shouldRepaint(

covariant CustomPainter oldDelegate,
) =>

false;
}

This AwesomePainter class grants access to a Canvas object, your playground, for
custom drawing. The paint method is where all the magic happens. Here, you
can draw anything from simple shapes to complex graphics on the canvas using
various drawing methods provided by the Canvas API. The size parameter gives
you the dimensions of the area you have for drawing.

The shouldRepaint method, the other method, is crucial for optimizing the wid-
get’s performance. It determines whether the CustomPainter should repaint itself.
For instance, returning false means the canvas will not repaint unless explicitly
told, which is beneficial for static graphics.

Now, to use this custom painter, you wrap it within a CustomPaint widget, like
so:

CustomPaint(
painter: const AwesomePainter(),

)

36 Custom Painters and Shaders

The CustomPaint widget integrates your custom drawing (AwesomePainter in this
case) into the Flutter widget tree. When you use CustomPaint and pass in your
AwesomePainter, Flutter knows to call the paint method of AwesomePainter
whenever it needs to render the widget.

2.1.2 Drawing App

In this example, I want to ensure you understand how easy it is to use Canvas,
even if it is your first use. Don’t be afraid to try!

Step 1: Define the Custom Painter (DrawingPainter)

class DrawingPainter extends CustomPainter {
List<Offset> points;

DrawingPainter(this.points);

@override
void paint(Canvas canvas, Size size) {

final pencil = Paint()
..color = Colors.black
..strokeWidth = 4
..isAntiAlias = true
..strokeCap = StrokeCap.round;

for (int i = 0; i < points.length - 1; i++) {
canvas.drawLine(

points[i],
points[i + 1],
pencil,

);
}

}

@override
bool shouldRepaint(

DrawingPainter oldDelegate,
) => true;

@override
bool shouldRebuildSemantics(

DrawingPainter oldDelegate,
) => false;

@override
bool? hitTest(Offset position) {

return super.hitTest(position);
}

}

Custom Painters and Shaders 37

DrawingPainter extends CustomPainter and is responsible for rendering the
drawing on the canvas. The Constructor takes a list of Offset points, repre-
senting the positions where the user has touched the screen.

Figure 2.1: Start Point (0,0) Top Left Corner Screen

paint method iterates through the points, drawing a line between each consecutive
point. The Paint object defines the appearance of the lines (color, stroke width,
anti-aliasing, and stroke cap); you can think of it as your pencil. And finally, the
drawLine method is used, which draws a line between the given points using the
given paint.

shouldRepaint method returns true, ensuring the canvas repaints whenever
the points list updates, and shouldRebuildSemantics and hitTest methods are
related to accessibility and hit-testing, respectively. These work similarly to what
you learned in Part 1 of the book while building custom RenderObject.

Step 2: Define the Widget (DrawingPage)

class DrawingPage extends StatefulWidget {
const DrawingPage({super.key});

@override
DrawingPageState createState() => DrawingPageState();

}

class DrawingPageState extends State<DrawingPage> {
List<Offset> points = <Offset>[];

@override
Widget build(BuildContext context) {

38 Custom Painters and Shaders

return Scaffold(
appBar: AppBar(

title: const Text('DrawingPage'),
),
body: GestureDetector(

onPanStart: (details) =>
points.add(details.localPosition),

onPanUpdate: (
DragUpdateDetails details,

) {
points.add(details.localPosition);
setState(() {});

},
onPanEnd: (DragEndDetails details) {

points.add(Offset.infinite);
},
child: SizedBox(

width: double.infinity,
height: double.infinity,
child: CustomPaint(

painter: DrawingPainter(points),
child: Container(),

),
),

),
);

}
}

This state class maintains a list of Offset points, updated whenever the user
draws on the screen, which is given by onPan callbacks via GestureDetector.

GestureDetector(
onPanStart: (details) => points.add(details.localPosition),
onPanUpdate: (DragUpdateDetails details) {

points.add(details.localPosition);
setState(() {});

},
onPanEnd: (DragEndDetails details) {

points.add(Offset.infinite);
},
// ... [CustomPaint]

)

onPanStart Listener adds a new point to the list when the user starts dragging.
onPanUpdate Listener Continuously adds points to the list as the user moves their
finger and calls setState to trigger a rebuild. onPanEnd Listener adds a special
Offset.infinite point, signaling the end of a continuous stroke.

Custom Painters and Shaders 39

The current list of points is passed to DrawingPainter, who draws the lines on
the canvas.

Figure 2.2: Simple Drawing App with Flutter

Nothing too fancy is happening here, just a few basic lines of code. And voila!
You now have a canvas that can be used to paint anything on. I am showing
you how to combine some basic elements to create an interesting concept using a
powerful API in Flutter. Now, let’s explore more advanced best practices.

2.1.3 Optimize

In the example provided, there are several key improvements and best practices
that I would like to highlight for a more efficient implementation.

Firstly, let’s consider the CustomPainter class in Flutter:

abstract class CustomPainter extends Listenable {
const CustomPainter({Listenable? repaint})

: _repaint = repaint;

final Listenable? _repaint;

// ...
}

In this snippet, it’s noteworthy that CustomPainter can automatically manage re-
painting when provided with a Listenable. This feature enables us to simplify our
widget structure by transitioning from a StatefulWidget to a StatelessWidget,
utilizing a ValueNotifier:

40 Custom Painters and Shaders

class DrawingPage extends StatelessWidget {
DrawingPage({super.key});

final pointsListenable = ValueNotifier<List<Offset>>([]);
// ...

}

Within this stateless widget, changes to the drawing can be easily managed by
updating the ValueNotifier in response to user gestures:

class DrawingPage extends StatelessWidget {
//...
body: GestureDetector(

onPanStart: (details) => pointsListenable.value = [
...pointsListenable.value,
details.localPosition

],
onPanUpdate: (DragUpdateDetails details) {

pointsListenable.value = [
...pointsListenable.value,
details.localPosition

];
},
onPanEnd: (DragEndDetails details) {

pointsListenable.value = [
...pointsListenable.value,
Offset.infinite,

];
},
//...

);
// ... ;

}

Additionally, we can optimize the repaint process by passing this notifier to the
custom painter and wrapping the painter with RepaintBoundary.

I suggest you review the official documentation and source code to learn about
RepaintBoundary. Explaining the details would take a lot of pages. How-
ever, I can tell you that to display a colored border around each widget; you
need to set the debugRepaintRainbowEnabled property to true. These bor-
ders will change color as the user scrolls through the app. To set this flag, add
debugRepaintRainbowEnabled = true; as a top-level property in your app. If
you see that static widgets rotate through colors after setting this flag, consider
adding repaint boundaries to those areas.

main() {
debugRepaintRainbowEnabled = true;

Custom Painters and Shaders 41

runApp(MyApp());
}

RepaintBoundary ensures that the repainting is contained and does not affect
other parts of the Flutter widget tree unnecessarily:

child: RepaintBoundary(
child: CustomPaint(

painter: DrawingPainter(pointsListenable),
child: const SizedBox.expand(),

),
),

Furthermore, the implementation of the CustomPainter itself is crucial. Here’s
how it can be adapted to leverage the ValueNotifier:

class DrawingPainter extends CustomPainter {
ValueNotifier<List<Offset>> points;

DrawingPainter(this.points) : super(repaint: points);
// ...
@override
void paint(Canvas canvas, Size size) {

for (int i = 0; i < points.value.length - 1; i++) {
canvas.drawLine(

points.value[i],
points.value[i + 1],
pencil,

);
}

}

@override
bool shouldRepaint(DrawingPainter oldDelegate) =>

oldDelegate.points != points;
// ...

}

This modification greatly enhances performance, especially in larger-scale appli-
cations. It’s an important optimization technique for a more efficient and effective
Flutter development experience.

This is the perfect moment to introduce you to the next section on best practices.

2.1.4 Best Practices

CustomPainter offers immense flexibility for crafting custom visuals in Flutter,
but mastering its efficiency and maintainability requires thoughtful practice. Let’s
dive into essential best practices with code examples for a deeper understanding:

42 Custom Painters and Shaders

Minimize Rebuilds with shouldRepaint:

Imagine your CustomPainter draws a dynamic chart. Every data tweak triggers
a complete redraw, impacting performance. shouldRepaint come to the rescue!

class ChartPainter extends CustomPainter {
final List<double> data;

ChartPainter(this.data);

@override
bool shouldRepaint(ChartPainter oldDelegate) {

// Compare only data changes
return !listEquals(

data,
oldDelegate.data,

);
}

@override
void paint(Canvas canvas, Size size) {

// ... draw chart based on data
}

}

With this code, the chart repaints only when the data changes, not for minor UI
tweaks, boosting performance.

Cache with PictureRecorder for Smooth Animations:

Think of a complex animated scene with static background elements. Repainting
them every frame is redundant. Enter PictureRecorder:

class AnimatedPainter extends CustomPainter {
PictureRecorder recorder = PictureRecorder();
Picture? picture;

// ... other methods

@override
void paint(Canvas canvas, Size size) {

if (picture == null) {
return;

}
canvas.drawPicture(picture!);

// ... draw dynamic animation elements on top
}

Custom Painters and Shaders 43

@override
bool shouldRepaint(covariant CustomPainter oldDelegate) {

// ...
}

}

Here, the static background gets recorded once and reused repeatedly, making
animations smoother and less resource-intensive.

Separate Logic with Mixins for Code Reuse:

Sometimes, your painting logic becomes complex. Mixing it with widget manage-
ment can get messy. Mixins to the rescue!

mixin ShapePainterMixin on CustomPainter {
@override
void paint(Canvas canvas, Size size) {

// ... common painting logic for drawing shapes
}

}

class MyPainter extends CustomPainter
with ShapePainterMixin {

// ... other properties and methods
}

This mixin encapsulates reusable shape-drawing logic, keeping your MyPainter
class focused on specific details and facilitating code reuse across other painters.

Modularize with Reusable Painters for Large Compositions:

Large, intricate visuals benefit from a divide-and-conquer approach. Enter mod-
ular painters:

class ChartPainter extends CustomPainter {
// ... paint the chart

}

class GaugePainter extends CustomPainter {
// ... paint the gauges

}

class LabelPainter extends CustomPainter {
// ... paint the text labels

}

class DashboardPainter extends CustomPainter {
@override
void paint(Canvas canvas, Size size) {

ChartPainter().paint(canvas, size);

44 Custom Painters and Shaders

GaugePainter().paint(canvas, size);
LabelPainter().paint(canvas, size);

}
}

Here, individual painters handle specific elements; the DashboardPainter com-
bines them seamlessly for a complete picture. This promotes modularity and
simplifies maintenance.

Enhance Accessibility with Semantics:

Accessibility ensures everyone can use your app. Semantics help screen readers
understand your custom visuals:

class ChartPainter extends CustomPainter {
// ...

@override
void paint(Canvas canvas, Size size) {

// ... draw chart elements

for (int i = 0; i < data.length; i++) {
final rect = Rect.fromLTWH(

i * 10,
0,
10,
data[i] * 50,

); // Example rect for data point
**CustomPainterSemantics(

rect: rect,
properties: SemanticsProperties(

label: 'Data point ${i + 1}',
value: '${data[i]}',

),**
).paint(canvas, size);

}
}

}

With semantics, screen readers can interpret data points and values, making your
custom charts accessible to everyone.

Reuse Paint Objects:

Instantiate Paint objects outside of the paint method and reuse them. This
practice conserves resources as creating a new Paint instance on each repaint can
be costly.

final paint = Paint()
..color = Colors.blue

Custom Painters and Shaders 45

..style = PaintingStyle.stroke;

void paint(Canvas canvas, Size size) {
// use existing paint object
canvas.drawLine(

Offset.zero,
Offset(size.width, size.height),
paint,

);
}

Handling High-DPI Screens:

Ensure your custom painting code scales correctly on high-DPI screens for a con-
sistent visual experience across devices.

final pixelRatio = MediaQuery.of(context).devicePixelRatio;

void paint(Canvas canvas, Size size) {
// Scale your drawing based on pixelRatio

}

Profiling and Optimization:

Regularly profile your custom painter code, especially when dealing with complex
drawings or animations, to identify and optimize performance bottlenecks.

Utilizing RepaintBoundary for Performance Optimization:

RepaintBoundary is a widget that isolates its child from the rest of the widget
tree in terms of painting. This can significantly improve performance, especially
for widgets that are expensive to paint and only change sometimes. By using
RepaintBoundary, you tell Flutter to handle the painting of this widget separately,
reducing the overall repaint cost.

RepaintBoundary(
child: CustomPaint(

painter: ExpensivePainter(),
isComplex: true,
willChange: false,

),
)

This code wraps ExpensivePainter () in a RepaintBoundary, optimizing its
rendering performance. The isComplex and willChange properties further inform
the rendering system about the nature of the painting operation, allowing for more
efficient handling.

Vertices - Advanced Shape Rendering with high performance:

46 Custom Painters and Shaders

In graphics programming, vertices are the cornerstone of rendering shapes and
models. A vertex is a point in either 2D or 3D space, defined by coordinates, and
serves as the fundamental unit for constructing more complex geometrical shapes.
Vertices are crucial in defining the outlines of polygons, particularly triangles,
which are the basic building blocks for most graphical objects in two-dimensional
and three-dimensional environments. These points can also carry additional at-
tributes such as color, texture coordinates, and normals, essential for creating
detailed and visually rich graphics.

In Flutter, the Vertices class is crucial for custom shape rendering, especially
when dealing with intricate designs or the need for high-performance graphics.
This class allows developers to define a series of points and how they should be
connected and colored. When used with the Canvas.drawVertices method, it
enables the drawing of complex shapes that are not achievable with standard
widgets.

The shapes drawn using Vertices are primarily based on triangles, the simplest
polygon in graphics programming, and can be combined to form any complex
shape. The way these triangles are formed and rendered depends on the mode
specified:

1. Triangles: Each set of three vertices forms an independent triangle.
2. Triangle Strip: Vertices are connected in a strip-like fashion, where each

new vertex forms a triangle with the previous two.
3. Triangle Fan: All triangles share the first vertex, fanning out from this

common point.

The Vertices class can be instantiated using either its default constructor or the
Vertices.raw constructor for more direct control over the data. Here’s a basic
overview of how to use each:

Vertices(
VertexMode mode,
List<Offset> positions, {

List<Color>? colors,
List<Offset>? textureCoordinates,
List<int>? indices,

})

This constructor is more straightforward and uses lists of Offset and Color ob-
jects, making it user-friendly but slightly less efficient.

Vertices.raw(
VertexMode mode,
Float32List positions, {

Int32List? colors,
Float32List? textureCoordinates,
Uint16List? indices,

})

Custom Painters and Shaders 47

Vertices.raw is a more performance-oriented constructor using typed data arrays
like Float32List and Uint16List. This approach is closer to the low-level data
format the rendering engine uses. It is ideal for performance-critical applications
or when working with data already in a raw format.

One example in the source code provided in this book allows you to navigate to
/lib/custompainters/snowfall.dart. Once you run the application, you can
turn Vertices.raw implementation on and off and fall back to standard canvas
drawing to observe the difference in performance.

2.2 Exploring Shaders

Shaders are small but powerful programs that run on the graphics processing unit
(GPU), responsible for rendering the intricate details of light and color that bring
digital images to life.

Shaders operate within the graphics pipeline, a sequence of steps that a computer
graphics system uses to render 3D objects onto a 2D screen. This pipeline includes
stages like vertex processing, rasterization, and fragment processing, with shaders
playing a vital role at various points. There are several types of shaders, each
with its unique function:

1. Vertex Shaders: These process each vertex of a 3D model, transforming 3D
coordinates into 2D screen coordinates and passing per-vertex data down the
pipeline. They are essential for manipulating vertex positions and creating
effects like animations.

2. Fragment (Pixel) Shaders: These calculate the final color of each pixel,
factoring in lights, shadows, and textures. They are key to achieving detailed
surface effects and realistic rendering of materials.

3. Geometry Shaders: Operating between vertex and fragment shaders, they
can generate new vertices and shapes, adding complexity and detail to ob-
jects.

4. Tessellation Shaders: Used for adjusting the level of detail of 3D mod-
els, these shaders enhance efficiency and visual quality by adapting to the
camera’s distance.

5. Compute Shaders: These handle general-purpose computing tasks within
the GPU, like physics simulations or post-processing effects, separate from
the direct image rendering process.

The graphics pipeline is a conceptual framework describing the steps to render a
3D object onto a 2D screen. It starts with processing the 3D coordinates (vertex
processing), then turning the object into pixels (rasterization), and finally coloring
these pixels (fragment processing). Shaders are integral to this process, providing
the flexibility to create complex visual effects.

48 Custom Painters and Shaders

2.2.1 Understanding Shader Language (GLSL)

OpenGL Shading Language (GLSL) is a high-level shading language used widely
in computer graphics for writing custom shaders. Shaders are small programs that
dictate how to graphically render each pixel, vertex, or geometry on the screen.
They are executed directly on the graphics processing unit (GPU), making them
incredibly efficient for graphics computations.

GLSL is an integral part of the OpenGL graphics API, a standard specification
defining a cross-language, cross-platform API for rendering 2D and 3D vector
graphics. The language closely resembles C and, in essence, Dart-like syntax,
making it familiar to Flutter developers.

The primary types of shaders in GLSL include vertex shaders, which process
vertex data, and fragment shaders, which determine each pixel’s color and other
attributes. Other types, like geometry and tessellation shaders, offer additional
control over rendering. I will focus on Fragment shaders as Flutter only supports
that.

A typical fragment shader, which usually has .frag or .glsl extension in GLSL,
includes:

Version Declaration: Specifying the GLSL version. This is optional.

Output Variable: A variable to store the color output for the pixel.

out vec4 fragColor;

vec4 is the most common output variable type used in fragment shaders. It
represents a four-component vector corresponding to the color’s RGBA (Red,
Green, Blue, Alpha) components. Sometimes, you might encounter vec3 if the
alpha component is not needed or is handled separately. It represents a three-
component vector for the RGB components of the color. In cases where only a
single color channel or a grayscale output is needed, a float can be used.

Main Function: Where the color calculation happens.

void main() {
fragColor = vec4(1.0, 0.0, 0.0, 1.0); // Red color

}

Here, fragColor is set to a static red color for every pixel.

Incorporate Uniform Variables: In GLSL, uniform variables are a type of
variable that you can use to pass data from your main application (running on
the CPU) to your shader program (running on the GPU). Uniforms are global
and remain constant for all vertices and fragments processed during a single draw
call. They are a key way to make your shaders dynamic and responsive to what’s
happening in your application.

For example, you can pass the time elapsed to create animations.

Custom Painters and Shaders 49

Figure 2.3: Demonstrate Red for Every Pixel

uniform float u_time;
void main() {

// The **sin** function creates a wave-like pattern,
// and **abs** ensure the value is positive.

float red = abs(sin(u_time));
fragColor = vec4(red, 0.0, 0.0, 1.0);

}

The fragment shader will produce a pulsating red color on the rendered object,
with the intensity of red changing over time in a sinusoidal pattern1.

Manipulate Coordinates: Use the coordinates of each pixel (gl_FragCoord)
to create gradients or patterns. gl_FragCoord provides the coordinates of the
current fragment (or pixel).

In the following example, these coordinates are divided by u_resolution, a uni-
form variable passed to the shader representing the resolution of the rendering
window or texture. The result is a normalized coordinate st (with both x and y
values ranging from 0 to 1) across the rendered surface.

uniform vec2 u_resolution;
out vec4 fragColor;

void main()

1https://www.shadertoy.com/view/XclSWr

50 Custom Painters and Shaders

https://www.shadertoy.com/view/XclSWr

{
vec2 st = gl_FragCoord.xy / u_resolution;
fragColor = vec4(st.x, st.y, 0.0, 1.0);

}

This shader will produce a gradient effect2 across the rendered surface, smoothly
transitioning in color based on the pixel’s position. The gradient will blend from
black at the bottom-left corner to red and green at the top-right corner.

Figure 2.4: Manipulate Coordinates to Create Gradient Effect

Complex Lighting and Color Effects: Here, we’re calculating the diffuse
component of lighting based on a light direction and surface normal.

uniform vec3 u_lightDirection;
uniform vec3 u_normal;
void main() {

float diff = max(dot(u_normal, u_lightDirection), 0.0);
// Diffuse lighting effect
vec3 diffuse = diff * vec3(1.0, 0.5, 0.3);
fragColor = vec4(diffuse, 1.0);

}

So, as you can see, there are also available helper functions. You can also create
a function to define const variables.

2https://shadertoy.com/view/4csSWr

Custom Painters and Shaders 51

https://shadertoy.com/view/4csSWr

Texture Sampling: In shaders, textures are images that add surface details like
color, patterns, or bumps to 3D models.

In the example, A sampler2D uniform in a shader is used to pass a 2D texture from
your application to the shader. The term “sampler” refers to the functionality in
a shader that allows it to read or sample data from a texture. The shader then
samples colors from this texture to apply to the rendered surface.

uniform sampler2D u_texture;
void main() {

vec4 texColor = texture(u_texture, gl_FragCoord.xy);
fragColor = texColor;

}

There are also other sampler types for different kinds of textures, like sampler3D
for 3D textures and samplerCube for cube map textures, each used for specific
rendering techniques.

This should give you an overview of how to read the shader’s GLSL code. However,
we have just touched the surface, and the best is to read a few shader examples,
particularly fragment shaders, to get more familiar with the concept.

2.3 Using Shaders in Flutter

Now that you understand what shaders are and how they play a role in com-
puter graphic programming let’s explore how Flutter leverages them. Flutter
incorporates Fragment shaders for enhanced visual effects. As a Flutter engineer,
understanding how to integrate and use shaders can significantly elevate the visual
appeal of your applications.

Figure 2.5: Widgets to Pixels Simple Pipeline in Flutter

2.3.1 Adding a Fragment Shader to Flutter

In Flutter, you primarily work with fragment shaders. Here’s how you can add a
.frag shader file to your Flutter project:

52 Custom Painters and Shaders

Creating the Shader File (simple.frag): Create a fragment shader file with
your GLSL code. Here’s an example shader that creates a gradient using Flutter’s
brand colors:

#version 460 core

#include <flutter/runtime_effect.glsl>

uniform vec2 u_surfaceSize;

out vec4 fragColor;

vec3 flutterBlue = vec3(5, 83, 177) / 255;
vec3 flutterNavy = vec3(4, 43, 89) / 255;
vec3 flutterSky = vec3(2, 125, 253) / 255;

void main() {
vec2 st = FlutterFragCoord().xy / u_surfaceSize.xy;

vec3 color = vec3(0.0);
vec3 percent = vec3((st.x + st.y) / 2);

color = mix(
mix(flutterSky, flutterBlue, percent * 2),
mix(flutterBlue, flutterNavy, percent * 2 - 1),
step(0.5, percent));

fragColor = vec4(color, 1);
}

• Any GLSL version from 460 to 100 is supported in Flutter, though some
available features are restricted.

• #include <flutter/runtime_effect.glsl>: This line includes declara-
tions for using Flutter-specific features in your shader.

• FlutterFragCoord(): A Flutter-specific function that provides the
fragment coordinates. Unlike gl_FragCoord in traditional GLSL,
FlutterFragCoord is adjusted for Flutter’s coordinate system.

• This Shader needs two floats that define surface size, which we can pass
from Flutter.

Adding Shader to pubspec.yaml: Include your shader file in the pubspec.yaml
file of your Flutter project:

flutter:
shaders:

- shaders/simple.frag

Loading Shaders at Runtime

Custom Painters and Shaders 53

One way to use shaders in Flutter is by loading them at runtime:

void loadMyShader() async {
final program = await FragmentProgram.fromAsset(

'shaders/snow.glsl',
);
final program2 = await FragmentProgram.fromAsset(

'shaders/simple.frag',
);

}

• FragmentProgram.fromAsset: Loads the shader from assets.
• You may see both .frag and .glsl extensions for fragment shaders.

Using Fragment Shaders with Canvas APIs

In Flutter, fragment shaders can be used with Canvas APIs by setting the
Paint.shader property:

void paint(Canvas canvas, Size size) {
shader.setFloat(0, size.width);
shader.setFloat(1, size.height);
final pencil = Paint()..shader = shader;

canvas.drawRect(
Rect.fromLTWH(0, 0, size.width, size.height),
paint,

);
}

• In this case, we are just cascading the shader with the fragment shader
that must be passed down to the custom painter class.

• Shaders can be applied to various shapes and paths drawn on the canvas,
offering versatile possibilities for custom graphics. Shaders, in combination
with blend modes, can have effects, too!

• Last but not least, since we have to define surface size to float, now we can
define it as the max with height—the setFloat sets the float uniform at
[index] to [value].

Now, we can use everything together in our Flutter app.

void main() async {
// 1
final fragmentProgram = await FragmentProgram.fromAsset(

'shaders/simple.frag',
);
// 2

54 Custom Painters and Shaders

runApp(MyApp(shader: fragmentProgram.fragmentShader()));
}

class MyApp extends StatelessWidget {
const MyApp({super.key, required this.shader});

// 3
final FragmentShader shader;

@override
Widget build(BuildContext context) {

return MaterialApp(
title: 'Simple Shader Demo',
theme: ThemeData(

colorSchemeSeed: Colors.blue,
useMaterial3: true,

),
home: MyHomePage(shader: shader),

);
}

}

class MyHomePage extends StatelessWidget {
const MyHomePage({

super.key,
required this.shader,

});

final FragmentShader shader;

@override
Widget build(BuildContext context) {

return Scaffold(
appBar: AppBar(

title: const Text('Simple Shader Demo'),
),
// 4
body: CustomPaint(

size: MediaQuery.sizeOf(context),
// 5
painter: MyShaderPainter(shader: shader),

),
);

}
}

// 5
class MyShaderPainter extends CustomPainter {

Custom Painters and Shaders 55

MyShaderPainter({required this.shader});
// 6
final FragmentShader shader;

@override
void paint(Canvas canvas, Size size) {

// 7
shader.setFloat(0, size.width);
shader.setFloat(1, size.height);

// 8
final paint = Paint()..shader = shader;

// 9
canvas.drawRect(

Rect.fromLTWH(0, 0, size.width, size.height),
paint,

);
}

@override
bool shouldRepaint(
covariant CustomPainter oldDelegate,

) =>
false;

}

Let’s break down what each numbered section in the code is doing:

1. Shader Initialization:

• Loads the fragment shader from the asset 'shaders/simple.frag'.
• FragmentProgram.fromAsset asynchronously loads the shader pro-

gram.
• fragmentProgram.fragmentShader() creates a FragmentShader in-

stance from the loaded program.

2. Application Startup:

• runApp initializes and runs the Flutter application.
• MyApp widget is created with the shader passed as a parameter.

3. Shader Propagation in MyApp:

• The MyApp class takes a FragmentShader instance as a parameter.
• This shader is then passed down to MyHomePage.

4. CustomPaint Widget in MyHomePage:

• The CustomPaint widget is used to provide a canvas on which to draw.
• MediaQuery.sizeOf(context) gets the current media (screen) size for

the painting area.

56 Custom Painters and Shaders

5. Painter for CustomPaint:

• ShaderPainter is set as the painter for CustomPaint.
• This custom painter uses the provided shader for drawing.

6. Shader in ShaderPainter:

• ShaderPainter takes a FragmentShader instance.
• This shader will be used for painting.

7. Setting Shader Uniforms:

• The shader’s uniforms are set, which in this case are the width and
height of the canvas.

• These values are provided to the shader to control its behavior based
on the canvas size.

8. Creating Paint with Shader:

• A Paint object is created, and its shader is set to the provided
FragmentShader.

• This paint will be used to draw with the effects of the shader.

9. Drawing on Canvas:

• A rectangle covering the entire canvas is drawn.
• The Paint with the shader applied is used, so the shader effect is

rendered across this rectangle.

This process can be way more simplified by using flutter_shaders. Let’s refactor
using this package.

void main() {
runApp(const MyApp());

}

class MyApp extends StatelessWidget {
const MyApp({super.key});

@override
Widget build(BuildContext context) {

return const MaterialApp(
home: MyHomePage(),

);
}

}

class MyHomePage extends StatelessWidget {
const MyHomePage({super.key});

@override
Widget build(BuildContext context) {

return Scaffold(

Custom Painters and Shaders 57

// 1
**body: ShaderBuilder(

assetKey: 'shaders/simple.frag',
(context, shader, child) {

return CustomPaint(
size: MediaQuery.sizeOf(context),
// 2
painter: ShaderPainter(shader: shader),

);
},

),**
);

}
}

We have now cut a few steps and are simply now using ShaderBuilder builder wid-
get to load the share for us. You can use other features from the package, such as
the SetUniforms extension (look at flutter_shaders/lib/src/set_uniforms.dart),
where technically, you can set your uniforms much easier and like a charm.

2.3.2 Converting from ShaderToy

Converting ShaderToy shaders to Flutter involves several steps to adapt the code
to the Flutter environment. For example, let’s consider converting a simple laser
effect shader from ShaderToy, which can be found at this ShaderToy link3.

//convert HSV to RGB
vec3 hsv2rgb(vec3 c)
{

vec4 K = vec4(1.0, 2.0 / 3.0, 1.0 / 3.0, 3.0);
vec3 p = abs(fract(c.xxx + K.xyz) * 6.0 - K.www);
return c.z * mix(

K.xxx, clamp(p - K.xxx, 0.0, 1.0), c.y
);

}

void mainImage(out vec4 fragColor, in vec2 fragCoord)
{

vec2 fragPos = fragCoord / iResolution.xy;
fragPos.y -= 0.5f;

vec3 color = hsv2rgb(
vec3(fragPos.x * 0.5 - iTime * 3.0, 1.0, 1.0)

3https://www.shadertoy.com/view/4f2GRR

58 Custom Painters and Shaders

https://www.shadertoy.com/view/4f2GRR

);
color *= (0.015 / abs(fragPos.y));

color += dot(color, vec3(0.299, 0.587, 0.114));

fragColor = vec4(color, 1.0);
}

ShaderToy shaders use a mainImage function, which differs from the standard
main function used in Flutter’s shaders. Additionally, ShaderToy automatically
provides certain uniforms like iResolution and iTime, which you must manually
declare in Flutter.

Key Differences and Adjustments

1. Entry Point:

• ShaderToy uses mainImage function, while Flutter uses the standard
main function.

2. Fragment Coordinates:

• ShaderToy shaders use fragCoord, but in Flutter, you should use
FlutterFragCoord().

3. Uniforms:

• ShaderToy provides iResolution and iTime uniforms automatically.
In Flutter, these must be explicitly declared and passed from the Dart
code.

4. Shader Inclusion:

• The #include <flutter/runtime_effect.glsl> directive is specific
to Flutter and necessary for using certain Flutter-specific features.

5. Output Variable:

• The output color is stored in fragColor in both ShaderToy and Flutter.

#include <flutter/runtime_effect.glsl>

uniform vec2 iResolution;
uniform float iTime;
out vec4 fragColor;

vec3 hsv2rgb(vec3 c) {
// ...

}

void main() {
vec2 fragPos = FlutterFragCoord().xy / iResolution.xy;
// ...

}

Custom Painters and Shaders 59

2.3.3 Setting Uniforms in Flutter

In your Flutter application, set the uniforms for the shader using shader.setFloat:

// In your custom painter class
void paint(Canvas canvas, Size size) {

shader.setFloat(0, size.width);
shader.setFloat(1, size.height);
shader.setFloat(2, time);

final paint = Paint()..shader = shader;

canvas.drawRect(
Rect.fromLTWH(0, 0, size.width, size.height),
paint,

);
}

Here, the size.width and size.height corresponds to iResolution, and time
corresponds to iTime. These values must be passed to the shader to mimic the
behavior of ShaderToy’s built-in uniforms.

This example illustrates a straightforward shader conversion. However, there are
more complex scenarios where additional steps are required. For instance, when
dealing with 2D texture samplers, you should use an AnimatedSampler from the
flutter_shaders package in Flutter and call setImageSampler() on the shader
object.

// In Flutter
shader.setImageSample(0, image); // pass dart:ui Image to the shader
// in GLSL
uniform sampler2D uTexture;

For those eager to delve deeper into shaders and the GLSL language, a great
resource is The Book of Shaders4. This online book offers an extensive and inter-
active learning experience, perfect for anyone seeking to expand their knowledge.

2.4 Conclusion

Exploring custom paintings and shaders in Flutter opens up a fascinating domain
where creativity meets technology. These powerful APIs enhance your applica-
tions’ visual appeal and offer an engaging and addictive playground for developers.

4http://thebookofshaders.com/

60 Custom Painters and Shaders

http://thebookofshaders.com/

The ability to transform code into captivating visuals is not just a technical skill
but an artistic expression, making the development process with Flutter an excit-
ing and rewarding journey.

I encourage you to embrace this opportunity to experiment and innovate. Each
raid into custom painting and shaders is a step towards mastering these tools,
pushing the limits of what’s possible in app design. So, dive in, play around,
and let your creativity flourish. The more you explore and create, the more you
learn, leading to applications that are not only functional but visually attractive
masterpieces.

Custom Painters and Shaders 61

62 Custom Painters and Shaders

Closing Words

So, you have come to the end of this book. As you turn the final page, it’s not
just the conclusion of a chapter in your learning journey but a gateway to new
possibilities. Throughout this book, we’ve navigated through complex concepts,
topics, detailed code, and solutions. These pages have enriched your understand-
ing and ignited a spark of curiosity and enthusiasm for the ever-evolving world of
Flutter.

Flutter is a continuous journey of learning and discovery. The concepts and tech-
niques you’ve encountered here are tools that can empower you to build, create,
and innovate. Whether you’re a student, a professional developer, or a hobby-
ist, the knowledge you’ve gained is a solid foundation upon which you can build
amazing things.

As you step beyond this book, remember that every line of code you write reflects
your creativity and problem-solving skills. The challenges you’ll face in the real
world might be complex, but the skills you’ve honed here will be your allies. Keep
experimenting, keep learning, and most importantly, keep coding. Practicing
makes perfect.

I hope this book will serve as both a guide and a step toward your success with
Flutter. May your future code be efficient and elegant and reflect your potential.

Thank you for choosing this book as your companion in your Flutter journey.
Here’s to many more lines of code, breakthroughs, and innovations in your future
endeavors.

Feel free to contact me through social media, email, and my flutterengineering.io
newsletter. I am in a mission to write and release more content. I would appreciate
your thoughts, feedback, and successes in your career and projects.

Remember: FLUTTER DEVELOPMENT IS FUN.

With best wishes for your continued success.

Majid Hajian

	Contributors and Reviewers
	Preface
	Acknowledgment
	I Foundation of Flutter Engineering
	Flutter Engineering: Core Concepts
	Engineering Software with Flutter
	Unpacking the Core Principles
	Lifecycle of Flutter Development
	Flutter Engineering vs. Programming
	Flutter's Position in Tech Evolution
	Conclusion

	Custom Painters and Shaders
	The Art of CustomPainter
	Exploring Shaders
	Using Shaders in Flutter
	Conclusion

	Closing Words

